
Source of Acquisition
NASA Ames Research Center

Willed Visser

RIACSNASA Ames -
Robust Software Engineering Group

I DEOS Remote Agent I

Robust Software Engineekg Group's case
studies in aerospace software analysis
- Remote Agent

- K9 Rover
0 Lessons learned
* Research gaps
9 Verifying autonomy software

- DEOS

4

1

Unexpected timing
Monitor Logic DE Change? of change event

I'

* Five dficult to find mncumsncy erroIs detected I .
* "tModel C h e h g l has had a suhstantd rmpact. helping the RA team

unprove the quality of the Executlve well beyond what would otherwise
have been produced '' - RA team
Dumg fhght RA deadlocked (m code we &dn't analyze)
- Found this deadlock with JPF

-
-A

1 I

* Model checking is suitable for analysis
0 Hand transIation of code into notation

suitable for analysis doesn't scale
- Also error-prone

program is written in
* Model checker must work on notation the

lnkgraied Modukrr Avionks (IMA)

- Mcckl checlc s l l c e of DEOS conbinig tmicg error

8

2

arti

0 One day briefing by HTC at NASA
- SystwnDescrpmon
- Htgh-level descriplm of k n w Error

* N A S A ~ d d n o t ~ w h c i r t h e p ~ s e e n o r ~ o n J
howiormkedqzpar

HTC delivered &30M) lines bf C++ axle

bk!el Check Actual Source Gode
- Mcdel Extrocliofi Reouires Expert Users
- Gcal is to lmproveCertificohon Process

"'*

1

1
I

* Use SPIN modelchecker

* TranslateDEOS C++&to PROMELA
- S y s t e i x d c T r a n s m Prc rzs s (by hand)

9 D e v e m Nordeterministic Environment
- I-tc-1- C e t o PROMELA

- Mcdel Timer and System Ticks to Remove Real-time

- Hlghly Flexible McdelQf T h r e d s
* T t m e ~ ~ b y N ~ ~ m n n i s t c C h o r ? e d Volms

* Threaj creoion a e b 6% API cnlls ccn c o x dvnmmlly

I
I
I"
I

* Model checking at source code level is feasibIe
= Environment creation is hard

- To r$is day it is THE probl
0 Research follow-up study

- Translated C++ to Java and used
JavaPatbFinder (JPF) mo

- Showed filter-based env
potential

3

Benchmark advanced V&V tools on autonomy software
- Model Checking: Java Pathfinder
- Run Time Analysis- JPaX and Temporal Rover
- sratlc Analysis: ~ o ~ y ~ p a c e ’

- Assess maturity /usability of each technology
- Compare each technology with traditional testing
- Examine whether data indicate potentiai synergies
- Identify gaps with respect to autonomy V&V

* Objectives

Code translation for tool Usage
0 Seeded with 12 buzs extracted

from developer’s CVS log

versions of the software

versions.

- Buss are distributed over three

- Some bugs appear u1 muluple

I Buz classification 1 -
- c o n c m n c y bugs: deadlock and

- plan bugs: pfan semanucs
... data laces (712)

violated (5112)

CBaar-

Executes flexible plans for autonomy
- branching on state f temporal conditions - Multi-threaded system
- mmumcauon through shared wnables
- synchronizauon through mntems and

con&aon vanables
* Main functionality: 8KLOC. C++

74

SeededBugsFound

i

VI
m
m

10

8

6

4

2

0
total testing MC RT

76
I

Irsdeadlock s d a t a race n plan semantics
I

4

h

- “Atomic” stafemens added
- Although JPF suppon parual-order reducoon, we don’t have a gwd static

analysis to01 to calculate independent m i b o n s
- We do now have B version of JPF that gonps all hlmsittons beween

synciuonvaoon slatemens mto an atomtc block - Do ;lummal~cally what we did manually . SrnRStDller

* Implemented a “Factory” based mputrucmre for addmg absacuons
- Abstracuons play such a key role m model checkmg that we dian’t want them

to seuz$e with engneenng lssues instead ofcreaung new absnacoons

* We gave them the “point” abstraction of me
I . - AU me-based decisions became nondetemimstic

- It IS lyp~cal to scat with the most over-approximated system and use
refinement as necessary

We wave them the “U~versal” planner that can create ulZ plans up to a
spec& s u e nonde temsuca l ly

-
- n ; m m m a n r r m M k k h n l a ~ ~ ” w e r s a l ~ v m ~ ’ ~

The experimental conditions for static analysis
were different from those for the other toois
PolySpace Verifier looks for run-time errors, e.g.,
- un-initialized variables/pointers
- ~ u t - n f - b ~ ~ n d z ~ - y zccessps
- overflowhderflow

The original C t t code was translated into C code
instead of Java
The tool had to be run overnight in a batch mode
because of its slow performances

1s
A 1.. 0 L -..-- *--el.- .,-d-..”-d :- +La ...,.ln&.-&-.+ - -r C” 0 l l”ulD I”‘ ullr bYYC Y>UY _I ullr c*ylr’-uYL

1

* Asked never to “run” the code, only model check It

Performed much better than testing, and, as well as runbme-analysis
- Keep theresulis clean fmm any tcstmp influence

- Mssed one concurrency error (nobody fmnd thrs one) and one plan emcx

- Partially abandoned the m e abstracnon wubm the frst how for one that IS
* Interesung observations

closer to real-ume, but might mlss em=
f Itwas wohardfarthemrr,&tcmunedumrswsrespunousootbnowingthecade

well om“&
- Didn’t use the Urnvernal planner as much as we anunpated . Fwher chanpc the uaalmng plans we gave thcm. probably to bc more m conrml
- Lots of nme spent wuh the helrnsuc options

~ = s i a r e s p a ~ e a v e ~ l ~ a n d h c u n s b g w e r e r u l u l r e d r o l c o ~ a t d ~ e r ~ ” t ~ ~
- Found a number of bugs in the first version, had a slow 2ad Vernon. and then

found all the remmnmg bogs m the fus part of the 3“ version - Tool. them some lime to per theafiamcwadt Y N ~ , bul o m dons lhcy were flyma

end
- Found a nasty bug m flaatmg-pomr anthmettc that slowed them down at the

e A priori static analysis seem easy to use:
- You feed fhe program to the analyzer, and out comes a

list of errors and w k g s you can easily sort through
e The expel%Be2t shews &at it is not &at easy:

- Participants didn’t understand how to deal with
w-9 - there are many more warnings than errors

- It is difficult to understand how approximations in the
analysis algorithms impact warnings, unless one has a
good understanding of the algorithms

5

Static Analysis
bservations cont.

0 Students quickly learned to use DBRover. Perhaps

* Users found it

sporadically.
I Most plan errors (excluding deadlocks and data

races) were found by examining printed
information. Some were found due to violated
temporal properties.

* Automatic generation of specs from plans would
have made DBRover a clear success (in the users
own words). In particular combined wit5 a
1&x:ers$ p k ~ e r . m& wnrk is ncw hehg done.

24

- The domain of applicability of each operation
flagged as an orange (warning) should be checked
in every possible execution context
- There are too many warnings to do this rigorously
- Participants didn’t undefitand how, and where, to use

- The participants chose to increase t te number of
execution paths that could be analyzed instead of
analyzing the given program
- They tned to make dead code reachable

assertions and stubs to eliminate oranges

I *

i
0 Students quickly learned to use tool. Interpretation

of results required some training.
Users found it very easy to apply tool. They
applied it instantly when they got a new version of
the code, and then with regular intervals.

0 Tool found all seeded resource deadlocks and the
seeded data race, and quickly. Tool is not designed
to find communication deadlocks. Did therefore
not find any.

0 No false positives or false negatives.
* Extension of tool to handle some communication

deadlocks is under way.
n

* Java PathExplorer
- Required no setup. Instrumentation is automated. No

specification or program manipulation is required.
DBRover
- Rover code was pre-instrumented to emit events of

the form (for actions ‘a’ and time points ‘t’):
start(a,t), success(a,t) and fail(a,t).

plan. This was time consuming.
- Users had to write a set of temporal formulae for each

r

6

* Black box approach. Test caes constructed Erom
the plan specification. - Maintained a test suite and performed regression
testing on each version.
Looked for concurrency‘errors and the results of
jitter by setting task durations and deadlines to

- Ran software on multiple platforms and modified
nearly equal values .I..

the task priorities.

Good at control analysis, but doesn’t scale
to data

symbolically about data

- JPF now supports symbolic execution of

0 Need to keep control concrete and reason

0 Our attempt at addressing this issue:

structures, integers and strings

I 27

Successfully applied Polyspace and CGS to MER
rover code
- Expert users in both cases

- Unlike Polyspace and CGS, Coverity is unsound (can

- Very good at ranking errors and report few false

* JPL study found Coventy to be very good

miss errors)

positiveshamings

-

0 Path sensitive and unsound seem to be better than
abstract interpretation based path insensitive
sound analyses

2s

* Suffers from too many false positives
Path sensitivity is good, but th
are often unsound (due to sc

0 Even the pa& sensiuve anaiyses don’t
produce concrete paths to the errors
- We hope to address this soon in a

specialization of the JPF model checker to do
path sensitive analysis for fin
errors in Java

7

* Model checking and static analysis do best with
mechanical (non-functional) properties
- Model chechng: concurrency errors, such as deadlock

- Static analysis: runtime errors, such as, null pointer

0 These are the “simple” bugs, but the real problems

- Suggestion

and data races

dereferences, array out o€ bounds, etc.

will come from the functional defects

- Use model checking and static analysis to derive
“good” test inputs and then use advance runtime
momtoring during testing 29

On-board autonomy
- Remote Agent experiment a success
- Mission managers are still skeptical

Mars Exploration Rovers daily activities
Newprojects
- “A Model of Cost and Risk for Autonomy”
- “Verifying Autonomy Software’’

* Planning & Scheduling on Earth used to schedule

30

e V&V risks and mitigations
5 ProjectPlan

- V&V survey to find what the autonomy experts think
are the risks and current mitigations

- Case studies on autonomy software
* Model venficatlop, laqe mvirommts, etc.

Real autonomy code seeded with typical bugs - State of the an V&V tools

* AUTONOMO (based on COCOMO & COQUAwrO)
- Use results to populate risk models

i 31

8

